Современная электроэнергетика, устройство электрических приборов, аппаратов и установок, промышленное электрооборудование и системы электроснабжения, электрический привод, альтернативные источники энергии и многое другое. У различных производителей технология изготовления и рецептура кремнийорганических композиций не являются полностью одинаковыми, что делает выбор изоляторов для эксплуатации крайне сложным. Изоляторы различных изготовителей с одинаковыми начальными электрическими и механическими характеристиками могут стать неодинаковыми по надёжности работы через несколько лет старения в условиях эксплуатации. В настоящее время в России https://forenergo-trade.ru/katalog-produktsii/item/zazhim-opornyj-aa-6-3 . Штифт входит в тело стеклопластикового стержня, раздвигая нити стеклянного ровинга, и создает условия для развития внутренней трещины вдоль всего стержня. Такая ситуация может быть достаточно длительной, изолятор при этом будет нормально работать.
- Магистральные линии электропередачи на напряжением 110 кВ и выше в настоящее время используют изолирующие подвески, выполненные на стеклянных подвесных изоляторах, в которых исключена возможность микропробоев внутри тела изолятора.
- Поэтому при этих напряжениях применяют опорные конструкции чаще всего в виде конусообразного треножника из трех колонок изоляторов.
- Это достигается благодаря высокой пластичности сырого фарфора, позволяющей придать массе оптимальную (наименее уязвимую) форму.
- Использование материалов в печатных изданиях возможно только с письменного разрешения компании «РОСЭНЕРГОРЕСУРС».
- Дело в том, что длительное воздействие электромагнитных волн, излучения, высокого напряжения может привести к разрушению пенополиуретана и образованию полостей для влаги.
- Далее следуют цифры, которые указывают номинальное напряжение изделия и минимальную разрушающую силу на изгиб.
В верхней части устройств находятся специальные металлические колпаки с отверстиями для фиксации шинодержателей и проводников. Вокруг ФОРЭНЕРГО , соединенная с фарфором прочной, обычно цементной смесью. Они используются в электрической аппаратуре, распределительных устройствах, ВЛЭП. Этим объясняется популярность изоляторов, высокие требования к надежности и долговечности. Вверху и внизу изделия располагаются металлические армирующие детали, которые позволяют закрепить его на основании или закрепить на изоляторе проводник.
Опорный Стержневой Полимерный Изолятор Наружной Установки На Напряжение 10 Кв
Большинство производителей изоляторов не придают особого значения этому фактору, полагая, что главное – это обеспечение механической прочности заделки. Некоторые производители приклеивают металлические фланцы, другие крепят их на винтах. Разные коэффициенты температурного расширения металла и стеклопластика приводят к разрушению клеевого соединения, а иногда и к тому, что фланец оказывается просто никак не закрепленным на изоляционном теле. Фиксация фланца от проворота с помощью штифтов при неправильном выполнении операции также грозит серьезными последствиями уже не только в части механической, но и электрической прочности. Самым слабым узлом стержневого опорного изолятора является стеклопластиковый электроизоляционный несущий стержень.
Чем выше возможная нагрузка, тем более строгие требования предъявляются к прочности изолятора, надежности, качеству крепления на поверхности. Особого внимания заслуживают приборы, подвергаемые большим механическим нагрузкам. Такие изоляторы должны быть особенно прочными – для этого в них предусмотрены квадратные металлические фланцы с дырками для болтов.
Изоляторы с внутренней заделкой арматуры (рис. 1, б) имеют меньшие вес, высоту и несколько лучшие электрические характеристики по сравнению с изоляторами с воздушной полостью. Достигается это потому, что при внутренней заделке арматуры наибольшие напряженности наблюдаются в фарфоре, воздушная полость отсутствует, а арматура играет роль внутреннего экрана. Используются для быстрого и безопасного проведения проводника сквозь различные препятствия – кожухи оборудования, стены и перекрытия. В качестве отличительной особенности изоляторов проходного типа до 35 кВ можно выделить полый корпус из фарфора с немного выступающими ребрами. Для крепежа используют специальный фланец и прочные колпаки из металла. Что же касается длины корпуса, то она определяется уровнем напряжения.
До 70 процентов случаев выхода из строя полимерных стержневых опорных и подвесных изоляторов связано с началом деструктивных процессов в этой зоне. В этой точке сходятся не только разные детали изолятора из разных материалов, но и сама точка находится в зоне наибольшей напряженности электрического поля. Граница электропроводной (фланец) и диэлектрической (стержень) среды определяет настолько неравномерное распределение поля, что возникают постоянные разряды (как внутренние, частичные, так и внешние), сопровождаемые короной.
Изоляторы, используемые в электрических аппаратах, называются аппаратными (электрические машины, трансформаторы, выключатели и т. п. ). Конструкции последних отличаются большим многообразием и в настоящем пособии не рассматриваются. Подробные характеристики, расшифровка обозначения, паспорт, чертеж и размеры изоляторов указаны ниже.
Изоляторы Опорные Стержневые Фарфоровые Типа Иос 10
С точки зрения потребителя и эксплуатации штыревой изолятор на 20 кВ значительно превосходит по характеристикам изолятор ШС-10Д на класс напряжений 10 кВ. Традиционно для изоляции высоковольтных проводов на напряжение кВ применяются штыревые изоляторы. ПО Форэнерго , 195»— испытательное напряжение грозового импульса (полный импульс) в кВ. Станционные и аппаратные изоляторы распределительных устройств но своему назначению и конструкции разделяются на опорные и проходные. В результате произошедших повреждений и аварий многие производители перестали выпускать некерамические изоляторы, а другие фирмы пошли по пути улучшения, как конструкции изолятора, так и технологии их изготовления.
Однако конструкция таких изоляторов практически определяется необходимой механической прочностью, расчетным напряжением перекрытия и мерами по устранению короны. Напряжения по элементам высокой колонки опорных изоляторов, так же как и в подвесной гирлянде, распределяются неравномерно. Для выравнивания напряжения применяют тороидальные экраны, закрепляемые на верхнем элементе колонки.
Учитывая недостатки конструкции изоляторов и изготовления изоляторов по технологии «шашлычного» оформления рёбер защитной оболочки, многие производители освоили новую технологию изготовления защитной оболочки изолятора — цельнолитое формование за один цикл. Число предприятий, выпускающих полимерные изоляторы, в несколько раз превышает производителей фарфоровых изоляторов. Ни для кого не секрет, что производство полимерных изоляторов не требует огромных вложений и помещений, как при производстве фарфоровых изоляторов. Производство полимерных изоляторов можно освоить в небольшой мастерской, тогда как для производства фарфоровых изоляторов нужен завод. Перевод изоляторов на надёжные материалы, как для изготовления изоляционной части изолятора, так и для изготовления арматуры изолятора, вернул веру у производителей электроэнергии, как в России, так и в странах ближнего зарубежья, в качество новой продукции.